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Nonequilibrium flow of ionized air  in a laminar  boundary layer  has been studied by severa l  invest igators  
[1-8], who have addressed  a number of p rac t ica l  problems [2-5]. Nonequilibrium effects in a boundary layer 
manifes t  themselves  par t icu la r ly  s t rongly in hypersonic  flow of ra re f ied  air .  In this case the unperturbed flow 
possesses  sufficient energy for dissociat ion and ionization, but the react ions  proceed slowly, and their  ra te  
does n o t  ensure  a thermodynamical ly  equil ibrium composit ion.  A boundary layer computation with nonequi- 
l ibr ium ionization was per formed ea r l i e r ,  for the case  of flow over ax i symmet r ic  bodies, assuming a !ow level 
of ionization [1-3]. With the lat ter  condition one need not account  for ionization in the energy  equations, and 
also one can use the gasdynamic pa rame te r  profi les in the boundary layer  f rom the zero- ioniza t ion  p rob lem to 
solve the nonequil ibrium degree of ionization problem [1, 6]. However,  in [1] great ly  simplifying assumptions 
were made concerning the physical  p r o c e s s e s  in the dissociat ing gas. For example,  the authors did not account 
for recombinat ion reac t ions  and the mass  flow of reac t ing  molecular  components ,  they assumed constant  
Schmidt number,  and the dimensionless product  of density and v iscos i ty  to be constant.  In addition, they gave 
quite an inaccura te  descr ipt ion of the p rocesses  for formation of atomic ni trogen and for cooling during d i sso-  
ciation. For  these reasons  it is of in te res t  to obtain a solution to nonequilibrium ionization in the boundary 
layer  with a more  r igorous  formulat ion of the problem. 

In this paper we consider  the problem of the laminar  boundary layer  of a mult icomponent gas with a 
smal l  degree of nonequilibrium ionization on the la tera l  surface  of a body. We use a boundary condition for 
ions that is an improvement  compared  with that in [6, 9], which enables us to consider  a smal l  region where 
the quasineutral  condition is violated near the wall (in con t ras t  with what was done in [1-5]). The approximate 
analytical  solution proposed makes it possible to rapidly  calculate the maximum concentrat ion of charged 
par t ic les  in the boundary layer when we have solutions for the neutral  components.  In applying the formulas 
obtained there  is no difficulty in es t imat ing the resu l t  of using these other models for the ionization p rocesses  
i.n a mult icomponent mixture and in explaining the discrepancies  associa ted with the use of different react ion 
ra te  constants assumed by different  authors [10-12]. 

1. Following re fe rences  [1-6], we shall a s sume that the ionization is quite small ,  but enough to make a 
contribution to the momentum and energy  equations. With this approach one can make full use of the calculated 
resu l t s  of numerous invest igators  of the hypersonic boundary layer ,  in pa r t  of the distribution of veloci ty  and 
tempera ture ,  and in the case  of a dissociated mixture ,  of the distribution of neutral  component concentrat ions.  
To do this one requi res  that 

n~V~/n~ << t~ 

where Vi is the ionization energy;  is the mean gas enthalpy per  par t ic le ;  ni is the ion concentrat ion;  and n is 
the total concentrat ion.  Here we consider  that the ionization is not so smal l  as to invalidate the quasineutral  
condition of the boundary layer  

d/8 << i (1.1) 

(where d is the Debye radius ,  and 8 is the displacement  thickness).  The latter inequality is a conditton for 
formation of a thin layer  of volume e lec t r ic  charge at the surface.  Outside this layer we have the ambipolar  
diffusion region,  and because of the quasineutral  condition, ne ~, hi, where ne is the e lec t ron concentrat ion.  

As the gas approaches equilibrium the thickness of the Debye layer  dec reases ,  and, as es t imate  for air  
indicate, becomes comparable  with the par t ic le  mean free path l. In the case 

d/l ~ t (1.2) 

the boundary condition for the equation for conservat ion of charged par t ic les  will be writ ten at the outer edge 
of the Langmuir  layer ,  at  a distance f rom the wall on the o rder  of the mean free path. When Eq. (1.2) does not 
hold the approximate boundary condition is applied at the outer edge of the Debye layer.  
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The wall  is a s sumed  to be non-heat -conduct ing,  i so the rma l  and quite cold, so that  complete  r e c o m b i n a -  
tion of ions occu r s  there .  

As a p r e r equ i s i t e  of  the p rob lem,  we introduce the hypothesis  that  we may  neglec t  volume recombina t ion  
in c o m p a r i s o n  with su r face  recombinat ion .  Numer ica l  e s t i m a t e s  for  a i r  indicate ,  e .g . ,  that the charged p a r t i -  
c les  a r e  main ly  fo rmed  in the high t e m p e r a t u r e  l ayer ,  where  there  is insignif icant  recombina t ion ,  and they 
then diffuse through r e l a t i ve ly  cold gas a t  the wall,  where  the r a t e  of  i o n i z a t i o n - r e c o m b i n a t i o n  p r o c e s s e s  in 
the volume is genera l ly  sma l l  compared  with the su r face  ra te .  

F r o m  the expe r imen ta l  data of [5] and f r o m  an e s t ima t e  i t  is a s sumed  that the e lec t ron  t e m p e r a t u r e  is 
c lose  to the gas t e m p e r a t u r e  in the main p a r t  of the boundary layer .  

We a s s u m e  the ex is tence  of an e l ec t r i c  field due to charge  separa t ion ,  which makes  it  n e c e s s a r y  in the 
p rob l em of flow over  a nonconducting wall  to take a coeff icient ,  accounting for the induced e lec t r i c  field, as the 
effect ive  diffusion coeff ic ient  in the equation for balance of a charged  component  of the mix ture ;  this is the 
analogue of the wel l -known ambipo la r  diffusion coeff ic ient  in the v e r y  s imple  case  of s ing le - spec ies  ions [13]. 

Le t  ionization reac t ions  of the f o r m  

X -~ Y -.,, X Y  + -{- e (1.3) 

o r  

" X - k  Y ~ X + - k  Y + e, 

take place  in the d issocia t ion  gas ,  and let  them have a m a s s  r a t e  of 

w, = (m~/mx m r  )p*cx cr  Kl  

with coeff ic ient  Ki, depending on ~ m p e r a t u r e .  Here  c x ,  c y  a r e  the m a s s  concentra t ions  of  the X and Y c o m -  
ponents ,  with pa r t i cu la r  m a s s e s  reX, m y ;  mi  is the ion m a s s ;  and p is the gas  density.  

For  a homogeneous gas the ionization p r o c e s s e s  descr ibed  by Eqs.  (1.3) apply quite well,  and for a d i s so -  
c iat ing mix tu re  only approx ima te ly  (due to the m o r e  complex  ionizat ion reac t ions) .  According to [14, 15], for  
a i r  a t  high t e m p e r a t u r e s  the re laxa t ion  t ime  for ionization p r o c e s s e s  is  g r e a t e r  than the re laxa t ion  t ime  for  

�9 dissociat ion.  

A low level  of  ionization, a ssoc ia ted  main ly  with the fo rmat ion  of NO + ions [16] occu r s  in p rob l ems  with 
d issocia t ing  and ionized a i r ,  and conditions a r i s e  where  the above assumpt ions  hold*. 

In the formula t ion  of the p r o b l e m  adopted he re  the equations descr ib ing  ionization a r e  separa ted  into a 
s u b s y s t e m  which may  be solved a f t e r  the d issocia t ing  boundary layer  p rob lem is solved.  He re  the ionization 
p r o b l e m  in the local s i m i l a r i t y  f r a m e w o r k  [17] gives l inear  d i f ferent ia l  equations,  because  the ionization r a t e  
is independent of  charged  pa r t i c l e  concent ra t ion  in the conditions considered.  

We shall  use the v a r i a b l e s  ~ and 77 in L e e s '  f o r m  [17] 
X . y 

~ = ( (p~r2J)wusdx ' "q r~u~(2~)_,12 f pdy ' (1.4) 
0 0 

in which the ion conse rva t ion  equation for the boundary layer  under  local  s im i l a r i t y  conditions takes the fo rm 

~----~ ~ ~  an / + + - ~ -  + w~ = o ,  

where x and y a r e  the coordinates  along and n o r m a l  to the body su r face ,  r e spec t ive ly ;  r is the dis tance f rom 
the axis of s y m m e t r y  to any point in the boundary layer ;  j = 0 for two-dimens iona l  flow and j = 1 for a x i s y m -  
me t r i c  flow; /~ is the gas v i scos i ty ;  Sc is the effect ive Schmidt number ,  and p i s t h e  densi ty.  

The d imens ion less  m a s s  ion concentra t ion ,  the par t i c le  format ion  r a t e ,  and the gas veloci ty  and t e m p e r a -  
t T ~ a r e  a s soc ia ted  with the d imens ion less  quanti t ies as follows: ~ r e ,  c~, w ~ r 

0 Ci 0 0 0 T~O t/, ci =---~-, w~ = p czcrn~,  ~'n = ~ T ~  ~" 
u s ~ T r n  " 

In addition, 

*The reac t ion  forming  the ni t r ic  oxide ion p redomina te s  in the shock layer  up to a fl ight ve loci ty  of 9 km/sec  
[16]. Nonequil ibrium flow in the boundary layer  ex is t s  for  g ~ 1. 
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cy o 2Y~ , pO=p__~, c ~  cx c~--  , K ~ -  
C X m  ~ C y m  Ix'ira 

O ,  ne D~ 2~ dx T ~ I  rn i OmCxmCymKim ~ n~ = - -  N = (~b~, ~ = "cT' N ~ ' ~ x ~  ~ 
item. ~ 

where ~ is the Damke l l e r  number ;  and Ti iS the c h a r a c t e r i s t i c  vo lume reac t ion  t ime.  The subscripLs w, m,  s 
denote p a r a m e t e r s  a t  the wall,  at  the m a x i m u m  t e m p e r a t u r e ,  and a t  the outer edge of the boundary  layer ,  
r e spec t ive ly .  

In the case  of Eq. (1.1), if  we neglect  the influence of quas ineut ra l i ty  being pe r tu rbed ,  the boundary con-  
dition a t  the ou te r  edge of the Debye layer  will have a f o r m  s imi l a r  to that  a s sumed  in [1-5] 

C i ~ 0  

(it is a s sumed  that  the condition of Eq. (1.2) does not hold here) .  

The boundary condition in Eq. (1.2) a s s o c i a t e s  the pa r t i c l e  fluxes appear ing  in the gasdynamic  equations 
with exp res s ions  obtained f r o m  gas -k ine t i c  examinat ion  of t r a n s f e r  through a potent ia l  b a r r i e r  a t  the outer  
edge of the Langmui r  l ayer  [6, 8, 18]: 

sr @ 2 t ~ i  

(k is the Bol tzmann constant) .  It is a s s um ed ,  as was noted above,  that  there  is comple te  r ecombina t ion  of ions 
a t  the wahl, and this is r e f l ec ted  in the n u m e r i c a l  coeff ic ient  on the r igh t  side of  Eq. (1.6). 

If we t r a n s f e r  to the va r i ab le  ~ and add the condition a t  the outer  edge of the boundary l aye r ,  :[or 7=0 we 
obtain the re la t ions  

c7 = O, dcT/dn-- • ~ = O, (1.7) 

where  

and a t  ~=~o 
o (1.8) 

C i ~ Cis,  

The l inear  boundary p r o b l e m  of Eqs.  (1.5), (1.7) and (1.8) can be solved by quadra tu res  (the ze ro  sub-  
s c r i p t  in the d imens ion less  quanti t ies will be omit ted f rom now on) 

c~(q) = [c~, + ~(oo) lz (n) /z ( : ,o )  - q~(q); (1 .9)  

~i~ -i- ~b (~) (1.10) 
c~ (~) - ~ : ~  [ l  + ~x  OD1 - * (~1), 

where 

t~ Ol) = S E J" (u,, Sc/EN) dodt; (1.11) 
0 0 

vl 

% (G) = J" Edt; (1.12) 
0 

E = ( N ~ S c / N S % ) e x p [ - - ~ ( S c % / N ) d t ] .  (I.13) 

The solution of Eq. (1.9) co r r e sponds  to the l imit ing case  of  x--~oo in Eq. (1.10). 

Thus,  the p r o b l e m  of de te rmin ing  the m a s s  ion concentra t ion prof i le  in the boundary layer  r educes  to 
evaluat ing the quadra tu res  Eqs.  (1.11)-(1.13). 

We note that  the solution of Eqs.  (1.9) and (1.10) is valid for an a r b i t r a r y  law for va r ia t ion  of t e m p e r a t u r e  
and composi t ion  in the boundary layer .  The re fo re  we can de te rmine  the ion concentra t ion  prof i le  by using 
numer i ca l  solutions for a d issocia t ing gas with va ry ing  Prandt l  and Schmidt  numbers .  For example ,  the solu-  
tions of [2, 3, 7, 8] a r e  known for  d issocia t ing a i r .  
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Taking into account  the well-known law for  p r e s s u r e  va r i a t ion  along a body su r face ,  and knowing the 
dependence o f  v i scos i ty ,  Schmidt  number  and the p a r a m e t e r  N on t e m p e r a t u r e  and p r e s s u r e ,  we can c a r r y  out 
the quadra tu res  of  Eqs.  (1.11)-(1.13) and find the ion concent ra t ion  prof i le  for a fixed value of the coordinate  x. 
The p rof i l es  of ve loc i ty  <p~(W) and t e m p e r a t u r e  TO/) here  a r e  known f r o m  solving the p rob l em with neut ra l  c o m -  
ponents.  

We note fu r the r  that,  having solved the p r o b l e m  for  a d issoc ia t ing  gas ,  allowing for  in teract ion between 
the boundary layer  and the shock wave,  as was done for  a nonreact ing  gas on a f lat  p la te  in [19], we can a lso  
find the ion concent ra t ion  p rof i l e  in the p r o b l e m  when the re  is in terac t ion  and a given law p(x) for the p r e s s u r e  
var ia t ion .  

2. When the a c c u r a c y  r e q u i r e m e n t s  for  the quadra ture  of Eq. (1.11) a r e  not so high, we can fall  back on 
Eq. (1.12). Suitable exp res s ions  a r e  obtained f r o m  the avai lable  data on dependence of ionization r a t e  on the 
t e m p e r a t u r e  and the shape  of the t e m p e r a t u r e  prof i le  in a hypersonic  boundary layer .  It is known that  a t  high 
Mach number ,  for  a cold wall,  the t e m p e r a t u r e  prof i le  has a pronounced maximum.  Also, the ionization r a t e  is 
exponent ia l  with t e m p e r a t u r e .  Consequent ly,  the main  contr ibution to fo rmat ion  of charged par t i c les  comes  
f r o m  a na r row reg ion  of the boundary layer  near  the t e m p e r a t u r e  maximum.  This allows us to r e p r e s e n t  the 
ionization ra t e  in t e r m s  of the 6 function and to reduce  the de te rmina t ion  of  m a s s  ion concentra t ion prof i le  to 
evaluat ion of the quadra tu re  of Eq. (1.12). 

With constant  Schmidt  number  a c r o s s  the boundary layer  we obtain s imple  analyt ica l  fo rmulas  which 
enable  us to make rap id  app rox ima te  computa t ions .*  E s t i m a t e s  show that  we can r ep l ace  the exponent by the 

function, without introducing large e r r o r s .  

where  

We shall consider that [16] 

Ks = T ~ exp [Ti(i -- I/T)], (2.1) 

Ki~,, = eT~V, exp (-- T~), T~ = D/Tm,. (2.2) 

and the constants  a, v, D a r e  de te rmined  by the specif ic  f o r m  of the reac t ion  and the approx imat ion  made by 
v a r i o u s  au thors  (for a i r  see ,  e .g . ,  [10-12]). 

We shal l  approx ima te  the t e m p e r a t u r e  prof i le  in a hypersonic  boundary layer  for a cooled wall in the 
m a x i m u m  region  and for  the coordina tes  rtm by the function 

T - -  1 = --o)(vl - -  rim) ~', (2.3) 

where  w is some  constant .  

After  a s e r i e s  expansion of the exponent  in Eq. (2.1), and the use  of  Eq. (2.3), we can wri te  the ionization 

r a t e  in t e r m s  of the 5 function in the f o r m  
K~ = (~1oT~)1/~8(~1 - -  ~lm). (2.4) 

By substi tut ing Eq. (2.4) into Eq. (1.11), a f t e r  the obvious t r an s fo rma t ions ,  we obtain 

I 0' ~ ~ ~,,,, (2.5) 
* 0]) = t ,  (oo) [z  (,}) - z (~ , . ) ] / [ z  (oo) - z (~],,,)], ,1 > ~,,,, 

where  

For Sc = const we obtain 

,(oo) = (~/(oT~)I/2ISB~/NmE(~I,~) ][Z(=) - -  Z(~l~) 1. 

E ----- [~"tqr lS~(N/N,~ ) sr 

z~(q) = 0 (n ) / [ * "  (0)ls~-'V~ - ' ,  o (~) = j t~  J ~v a,, 
0 

, ( = )  = (=,'~oT~)v~ So [ 0 ( ~ )  - -  0(,q,,,)]/[,W(~I.,)N,.IS~ 

and X is replaced by 0 in Eq. (2.5). Here the primes denote differentiation with respect to 7- 

In conclusion we write expressions for the parameter ~ and the Damkeller number ~ for a sharp cone. 
From the first expression in Eq. (1.4), with (#G/T)w= const (G is the molecular weight), we obtain 

*The condition is not a limit of the problem, but is only regarded as one possible special case simplifying the 

final formulas, Eqs, (1.11), (1.12) and (2.5). 
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Using Eqs.  (2.2) and (2.6), af ter  simple t ransformat ions  we have 

(~n7 Gw p~ )t/2 = 2Scw m 3g~tw us 

2omlrn px Tv--I  (2.7) 
--  3 k z x m y  CxmcymGr't -~s - m  exp (-- Ti) 

(m is the mass  of the hydrogen atom). 

Thus, knowing Sc, the profi les  of ~v and N, the pa r ame te r s  ~r~, w and u ,  we can find the distribution of the 
dimensionless  mass  ion concentrat ion in the boundary layer ,  Eqs. (1.9) and (1.10), and, using Eq. (2.7), the 
absolute value for a fixed coordinate x. 

3. As an example of the use of the analytical  formulas  we consider  a sharp cone washed by a i r  at  con- 
stant p r e s s u r e  along the surface.  To find the veloci ty profi le  we use the conventional t empera tu re  distribution 
[20]. In this case  N is formal ly  replaced by N* = (pV)*/(p~)w, which we find f rom the value of the re la t ive  
t empera tu re  T*, and the equation of motion is reduced to the Blasius equation for the function r x/~ with 
var iable  ~l/(N*p/% The dimensionless e lec t ron  concentra t ion and its maximum value for u>>l ,  Cis<<l a re  
found f rom the formulas  

n e = O(~176176176 nern = [,(oo) ~ p G m l K T  m ][mO(~lm)lm, O(oo) ]. 

Our es t imates  show that the effective Schmidt number for dissociat ing air  does not cor respond to the 
values adopted in [1-4] (the authors did not account  for the phenomenon of charge  exchange). A better  approxi-  
mation will be given by Sc = 0.75, which is used in the calculations here.  

Figure 1 shows the dimensionless e lec t ron concentrat ion profi le in the boundary layer  (solid line) for the 
case  of Eq. (1.2) with px/u s = 10 -3 a t m - s e c ,  N*= 1, cis <<1, and, for compar ison,  the r e su l t  obtained by the 
finite difference method of  [2] (points). Both calculations r e f e r  to a cone semiver tex  angle of 10 ~ u s = 6585 
m/sec  and Tw= 1000~ Since, for a given cone semiver tex  angle and veloci ty  of the incident flow, the t empera -  
ture profiles va ry  only slightly [2, 3] with var ia t ion of the b inary  s imi la r i ty  pa r ame te r  px/u s [21], in the ca lcu-  
lations we used the tempera ture  distribution near the cone ver tex  for p = 0.247 arm [2]. In the example p ro -  
vided for compar i son  we also assumed the dimensionless  concentrat ion profile to be independent of the binary 
s imi lar i ty  pa ramete r .  We note that the behavior of the concentrat ion for ~?<0.1 was obtained here because of 
the improved boundary conditions. The agreement  of the profi le  through the boundary layer  with the resu l t  of 
accura te  numer ica l  calculations is fully sa t i s fac tory .  

By extrapolating the maximum concentrat ions of the atomic components,  obtained in [2] by the approxi-  
mate method of  [1], for our value of the binary s imi la r i ty  pa r ame te r ,  it may be shown that the condition of Eq. 
(1.2) is sat isfied for p<0.5  arm. 
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Figure 2 shows the results of calculated maximum electron concentration in the boundary layer for the 
case of Eq. (1.1) (curve 1). The parameter w, which varies slightly with the binary similarity parameter [2, 3], 
was assumed to be equal to fine value near the cone apex, and the maximum temperature and concentration of 
the atomic components were taken from [2]. Data were used relating to a constant rate for the ionization 
reaction N + O ~  NO++e, as given in [10]. Figure 2 also shows results obtained using the approximate theory 
[1] (curve 2, a) Tm=4580~ b) Tm=4700~ by the finite difference method of [2] (curve 3) and by the method 
of integral relations of [3] (curve 4). We note that the results obtained here agree better with the exact numeri- 
cal calculations of [2, 3] than with those determined by the approximate method of [1], although these do not 
require the use of a computer. 
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